Note

Adsorption of monosubstituted phenols on Sephadex ${ }^{\text {® }}$ G-15

ȦSA CH. HAGLUND
Institute of Physiology and Medical Biophysics, Uppsala University Biomedical Centre, Box 572, S-751 23 Uppsala (Sweden)

(Fist received February 24th, 1978; revised manuscript received April 17th, 1978)
Sephadex ${ }^{\circledR}$ dextran gels exhibit various kinds of selectivities of which a high afinity for certain aromatic compounds was first pointed out by Gelotte ${ }^{1}$. Determann and Walter ${ }^{2}$ suggested that the ether groupings on the crosslinks between the dextran chains are responsible for the adsorption of aromatic solutes, and Brook and Hous$l^{2} y^{3}$, and later Brook and Munday ${ }^{4}$, suggested that the affinity of the gel for phenols is due to an interaction between the phenolic hydroxyl hydiogen and the crosslink. They reported that the adsorption by Sephadex dextran gels of a series of monosubstituted phenols could be correlated by the Hammett equation except in the case of halogen-substituted phenols which are more strongly adsorbed than would be predicted from this equation. Brook and Munday interpreted this as indicative of a different mechanism for adsorption of halophenols.

This paper re-examines this question and it is proposed that all the investigated monosubstituted phenols including the halophenols are adsorbed onto the gel by the same mechanism.

The Hammett equation

For 3- and 4-substituted benzene derivatives a plot of the logarithm of the equilibrium constant K for one reaction against $\log K$ for a second reaction is usually linear. Hammett ${ }^{5}$ formalized this linear free-energy relation (LFER) as in eqn. 1

$$
\begin{equation*}
\log \frac{K}{K_{0}}=\varrho \cdot \log \frac{K^{\prime}}{K_{0}^{\prime}} \tag{1}
\end{equation*}
$$

where K_{0} refers to the unsubstituted benzene derivative and ϱ is a proportionality constant. The ionization of substituted benzoic acids (K^{\prime}) was chosen as a standard and $\log \left(K^{\prime} / K_{0}^{\prime}\right)$ was defined as the substituent constant σ. Hence eqn. 1 becomes

$$
\begin{equation*}
\log \frac{K}{K_{0}}=\varrho \cdot \sigma \tag{2}
\end{equation*}
$$

where ϱ is a constant, specific for the reaction involved.
For the adsorption of monosubstituted phenols by Sephadex gels, eqn. 2 can be written as

$$
\begin{equation*}
\log \frac{K_{\mathrm{d}}(\mathrm{Y}-\mathrm{ArOH})}{K_{\mathrm{d}}(\mathrm{ArOH})}=e \cdot \sigma_{\mathrm{Y}} \tag{3}
\end{equation*}
$$

However, since Y itself contributes to the adsorption onto the gel, a correction for this adsorption should be made, and hence eqn. 3 is modified to

$$
\begin{equation*}
\log _{K_{\mathrm{d}}(\mathrm{ArOH}) \cdot K_{\mathrm{d}}(\mathrm{Y})}^{K_{\mathrm{d}}(\mathrm{Y}-\mathrm{ArOH})}=\varrho \cdot \sigma_{\mathrm{Y}} \tag{4}
\end{equation*}
$$

where $K_{d}(Y)$ denotes the contribution from the substituent group Y and is calculated as the ratio of K_{d} values for $A r-Y$ and benzene.

MATERIALS AND METHODS

Sephadex ${ }^{*}$ G-15 (Batch No. 2014) and Dextran ${ }^{\otimes} 500(\bar{M} W=450,000)$ were obtained from Pharmacia, Uppsala, Sweden. All of the chemicals were of sufficient purity to give single quasi-symmetrical elution peaks. The solutions were made up in water purified in a Milli-Q 4 Housing System (Millipore, Bedford, Mass., U.S.A.).

The solutes were eluted through columns ($45 \mathrm{~cm} \times 0.8 \mathrm{~cm}^{2}$) with a linear flowrate of $c a .3 \mathrm{~cm} / \mathrm{h}$ at $35 \pm 0.2^{\circ}$. The column was pre-washed and eluted with Millipore water. The test solutes were loaded on to the column in a volume of $0.3 \mathrm{ml}(0.8 \%$ of column volume) and their concentration never exceeded $1 \mathrm{~g} / \mathrm{l}$. The eluent concentrations were recorded continuously by a differential refractometer (Model R403, Waters Assoc., Milford, Mass., U.S.A.) and samples of the eluate were collected in tubes at 2-h intervals in a closed box containing air saturated with water vapour.

The dynamic distribution coefficient (K_{d}) is defined ${ }^{\bar{\sigma}}$ as

$$
K_{\mathrm{d}}=\frac{V_{c}-V_{\mathrm{o}}}{V_{\mathrm{i}}}
$$

where V_{e} and V_{o} are the peak elution volumes of the test solute and a void-volume indicator (Dextran 500) respectively. V_{i}, the internal water volume of the gel column, was calculated from the peak elution volume of ${ }^{2} \mathrm{H}_{2} \mathrm{O}$, which however gives an overestimate due to isotope exchange ${ }^{7}$ with labile hydrogen atoms (hydroxyl) on the gel. The exchange reaction should thus retard the movement of deuterium of the deuterated water in the column to about the same extent as tritium of tritiated water $\left(\mathrm{H}^{3} \mathrm{HO}\right)^{\text {s }}$. The true internal water volume can be obtained as the peak elution volume of $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ (ref. 9) and the ratio

$$
\varphi=\frac{V_{\mathbf{H}^{3} \mathrm{Ko}}-V_{0}}{V_{\mathrm{H}_{2} 18 \mathrm{O}}-V_{\mathrm{o}}}
$$

can be determined. For G-15 the ratio is 1.075 (ref. 10) and hence

$$
K_{\mathrm{d}}=\varphi \cdot \frac{V_{\mathrm{c}}-V_{\mathrm{o}}}{V_{2_{\mathrm{H}_{2} \mathrm{O}}}-V_{\mathrm{o}}}=1.075 \cdot \frac{V_{e}-V_{\mathrm{o}}}{V_{2_{\mathrm{H}_{2} \mathrm{O}}}-V_{\mathrm{o}}}
$$

RESULTS AND DISCUSSION

Log K_{d} values for benzene and nine monosubstituted benzene derivatives as

TABE돌
DISTRIBUTION COEFFICIENTS AND GROUP CONTRIBUTIONS FOR BENZENE AND MONOSUBSTITUTED BENZENE DERIVATIVES

No.	Compound	$\log K_{d}$	Group (Y)	Group contribution $Y(Y)$
1	Benzene	0.4837	\emptyset	0.4837
2	Toluene	0.5998	CH_{3}	0.1160
3	Phenol	0.6061	OH_{3}	0.1224
4	Anisole	0.5798	OCH_{3}	0.0960
5	Benzaldehyde	0.4702	CHO_{3}	-0.0136
6	Acetophenone	0.4953	COCH_{3}	0.0116
7	Fluorobenzene	0.5311	F	0.0473
8	Chlorobenzene	0.7737	Cl	0.2900
9	Bromobenzene	0.8901	Br	0.4063
10	Iodobenzene	1.0637	I	0.5800

well as contributions from the substituent group Y are reported in Table I. The contribution of Y is calculated as

$$
Y(Y)=\log K_{d}(A r Y)-\log K_{d}(\text { benzene })=\log K_{d}(Y)
$$

Table II gives the $\log K_{d}$ values of 18 monosubstituted phenols. Log K_{d} values were

TABLE II
DISTRIBUTION COEFFICIENTS AND σ_{y} VALUES OF MONOSUBSTITUTED PHENOLS σ values were taken from ref. 11, if not stated otherwise.

N N.	Phenol	$\boldsymbol{\operatorname { l o g }} K_{\boldsymbol{d}}$		Δ (exptl. - calc.)	σ_{x}
		ExptI.	Calc.		
21	$3-\mathrm{CH}_{3}$	0.7179	0.7221	-0.0042	-0.07
22	$4 \mathrm{CH}_{3}$	0.7087	0.7221	-0.0134	-0.17
24	3-OH	0.7624	0.7285	0.0339	0.12*
25	4 OH	0.6753	0.7285	-0.0532	-0.36
27	$3-\mathrm{OCH}_{3}$	0.7398	0.7021	0.0377	0.12
28	$4-\mathrm{OCH}_{3}$	0.6647	0.7021	-0.0374	-0.27
30	3-CHO	0.6676	0.5925	0.0751	0.36
31	$4-\mathrm{CHO}$	0.6779	0.5925	0.0854	0.43**
33	$3-\mathrm{COCH}_{3}$	0.6864	0.6177	0.0687	0.31
34	$4 \mathrm{COCH}_{3}$	0.7006	0.6177	0.0829	0.44**
36	3-F	0.7197	0.6534	0.0663	0.34
37	4-F	0.6756	0.6534	0.0222	0.06
39	$3-\mathrm{Cl}$	0.9812	0.8961	0.0851	0.37
40	4 Cl	0.9553	0.8961	0.6592	0.23
42	$3-\mathrm{Br}$	1.1013	1.0124	0.0889	0.39
43	$4-\mathrm{Br}$	1.0761	1.0124	0.0637	0.23
45	3-I	1.2703	1.1861	0.0842	0.35
46	4 I	1.2486	1.1861	0.0625	0.28

[^0]also calculated as the sum of the contributions from the benzene ring (\varnothing) and the two substituents.
$$
\log K_{\mathrm{d}}(\text { calc. })\{\stackrel{\mathrm{OH}}{\varnothing /}-\mathrm{Y}\}=Y(\varnothing)+Y(\mathrm{OH})+Y(\mathrm{Y})
$$

The difference between the experimentally found $\log \mathbf{K}_{\mathbf{d}}$ value and the calculated value is denoted 4 (exptl. - calc.).

$$
\begin{aligned}
& \Delta(\operatorname{expt1} .- \text { calc. })=\log K_{d}(Y-A r O H)-[Y(\varnothing)+Y(\mathrm{OH})+Y(\mathrm{Y})] \\
& \Delta(\operatorname{exptl} .- \text { calc. })=\log \frac{K_{\mathrm{d}}(\mathrm{Y}-\mathrm{ArOH})}{K_{\mathrm{d}}(\varnothing) \cdot K_{\mathrm{d}}(\mathrm{OH}) \cdot K_{\mathrm{d}}(\mathrm{Y})}=\log \frac{K_{\mathrm{d}}(\mathrm{Y}-\mathrm{ArOH})}{K_{\mathrm{d}}(\mathrm{ArOH}) \cdot K_{\mathrm{d}}(\mathrm{Y})}
\end{aligned}
$$

Eqn. 4 can now be written as

$$
\begin{equation*}
\log \frac{R_{d}(\mathbf{Y}-\mathrm{ArOH})}{K_{\mathrm{d}}(\mathrm{ArOH}) \cdot K_{\mathrm{d}}(\mathrm{Y})}=\Delta(\operatorname{exptl} .- \text { calc. })=\varrho \cdot \sigma_{\mathbf{Y}} \tag{5}
\end{equation*}
$$

Fig. 1 shows $\log K_{d}$ ratios and substituent σ values in a plot of eqn. 3. The straight line was calculated by linear regression and the standard deviation s and the correlation coefficient r were calculated as outlined by Jaffei ${ }^{11}$. The linear regression equation is

$$
\log \frac{K_{d}(\mathrm{Y}-\mathrm{ArOH})}{K_{\mathrm{d}}(\mathrm{ArOH})}=0.3308 \sigma_{\mathrm{y}}+0.1708
$$

Fig. 1. Piot of data for monosubstituted phenols according to eqn. 3. The numbers refer to the listing in Table II. For simplicity the halophenols have been denoted by filled circles.
with $n=18, s=0.200$ and $r=0.386$. With this plot, which is that used by Brook and Munday, there is no indication of any correlation. If, however, as Brook and Munday pointed out, the data for the halogen derivatives are excluded, there is a fair degree of linearity among the remaining solutes. However, this is almost certainly due to the similar magnitudes of their Y-group contributions.

In Fig. 2 the $\log K_{d}$ values are correlated with substituent σ values as in eqn. 5 , i.e. correction is made for the contribution of the isolated Y group. The linear regression equation thus becomes

$$
\Delta(\text { exptl. }- \text { calc. })=0.1801 \cdot \sigma_{\mathbf{Y}}+0.0132
$$

where $n=18, s=0.005$ and $r=0.993$. The correlation is now good, and this suggests the same mechanism of adsorption to the gel for all the investigated monosubstituted phenols, although no definite conclusion about the mechanism itself can be drawn as yet.

Fig. 2. Plot of the same data as in Fig. 1 but on the basis of eqn. 5. The notation is as in Fig. 1.

ACKNOWLEDGEMENTS

I wish to thank Dr. N. V. B. Marsden for invaluable discussions. This work was supported by the Swedish Natural Science Research Council (Grant K 2944) and Uppsala University.

REFERENCES

1 B. Gelotte, J. Chromatogr., 3 (1960) 330.
2 H. Determann and I. Walter, Nature (London), 219 (1968) 604.
3 A. J. W. Brook and S. Housley, J. Chromatogr., 41 (1969) 200.
4 A. J. W. Brook and K. C. Munday, J. Chromatogr., 47 (1970) 1.

5 L. P. Hammett, Physical Organic Chemistry, McGraw-Hill, New York, 1940.
6.R. M. Wheaton and W. C. Bauman, Ann, N.Y. Acad. Sci, 57 (1953) 159.

7 R. P. Bell, The Proton in Chemistry, Cornell Univ. Press, Ithaca, N. Y., 1959, Ch. XI.
8 N. V. B. Marsden, personal communication.
9 N. V. B. Marsden, J. Chromatogr., 58 (1971) 304.
10 N. V. R. Marsden, Acta Univ. Upsaliensis, 123 (1972) I:18.
11 H. H. Jaffé, Chem. Rey., 53 (1953) 191.

[^0]: *D. H. McDaniel and H. C. Brown, J. Org. Chem., 23 (1958) 420.
 ** A. A. Humffray, J. J. Ryan, J. P. Warren and Y. H. Yung, Chem. Commun., (1965) 610.
 *- O. Exner, Collect. Czech. Chem. Commun., 31 (1966) 65.

